
i

STATISTICS

To reduce the size of this section’s PostScript file, we have divided it into
two PostScript files. We present the following index:

PART 1

Page # Section name

1 29.1 Parameter estimation
2 29.2 Data with a common mean
2 29.3 The method of maximum likelihood
4 29.4 Propagation of errors
5 29.5 Method of least squares

PART 2

Page # Section name

9 29.6 Exact confidence intervals
16 References

June 24, 1998 14:36
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29. STATISTICS

Revised April 1998 by F. James (CERN).

29.1. Parameter estimation [1–4]

A probability density function f(x;α) (p.d.f.) with known parameters α enables us
to predict the frequency with which random data x will take on a particular value (if
discrete) or lie in a given range (if continuous). In parametric statistics we have the
opposite problem of estimating the parameters α from a set of actual observations.

A statistic is any function of the data, plus known constants, which does not depend
upon any of the unknown parameters. A statistic is a random variable if the data have
random errors. An estimator is any statistic whose value (the estimate α̂) is intended as
a meaningful guess for the value of the parameter α, or the vector α if there is more than
one parameter.

Since we are free to choose any function of the data as an estimator of the parameter α,
we will try to choose that estimator which has the best properties. The most important
properties are (a) consistency, (b) bias, (c) efficiency, and (d) robustness.

(a) An estimator is said to be consistent if the estimate α̂ converges to the true value
α as the amount of data increases. This property is so important that it is possessed by
all commonly used estimators.

(b) The bias, b = E( α̂ ) − α, is the difference between the true value and the
expectation of the estimates, where the expectation value is taken over a hypothetical set
of similar experiments in which α̂ is constructed the same way. When b = 0 the estimator
is said to be unbiased. The bias may be due to statistical properties of the estimator or
to systematic errors in the experiment. If we can estimate the b we can subtract it from α̂
to obtain a new α̂′ ≡ α̂− b. However, b may depend upon α or other unknowns, in which
case we usually try to choose an estimator which minimizes its average size.

(c) Efficiency is the inverse of the ratio between the variance of the estimates Var(α̂)
and the minimum possible value of the variance. Under rather general conditions, the
minimum variance is given by the Rao-Cramér-Frechet bound:

Varmin = [1 + ∂b/∂α]2 /I(α) ; (29.1)

I(α) = E


[
∂

∂α

n∑
i=1

ln f(xi; α)

]2
 .

(Compare with Eq. (29.6) below.) The sum is over all data and b is the bias, if any;
the xi are assumed independent and distributed as f(xi ;α), and the allowed range of x
must not depend upon α. Mean-squared error, mse = E[( α̂ − α )2] = V ( α̂ ) + b2 is a
convenient quantity which combines in the appropriate way the errors due to bias and
efficiency.

(d) Robustness; is the property of being insensitive to departures from assumptions
in the p.d.f. due to such factors as noise.

CITATION: C. Caso et al., European Physical Journal C3, 1 (1998)
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2 29. Statistics

For some common estimators the above properties are known exactly. More generally,
it is always possible to evaluate them by Monte Carlo simulation. Note that they will
often depend on the unknown α.

29.2. Data with a common mean

Suppose we have a set of N independent measurements yi assumed to be unbiased
measurements of the same unknown quantity µ with a common, but unknown, variance
σ2 resulting from measurement error. Then

µ̂ =
1
N

N∑
i=1

yi = E(y) (29.2)

σ̂2 =
1

N − 1

N∑
i=1

(yi − µ̂)2 =
N

N − 1

(
E(y2)− µ̂2

)
(29.3)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/N . If the common p.d.f.
of the yi is Gaussian, these estimates are uncorrelated. Then, for large N , the standard
deviation of σ̂ (the “error of the error”) is σ/

√
2N . Again if the yi are Gaussian, µ̂

is an efficient estimator for µ. Otherwise the mean is in general not the most efficient
estimator. For example, if the y follow a double-exponential distribution, the most
efficient estimator of the mean is the sample median (the value for which half the yi lie
above and half below). This is discussed in more detail in Ref. 2, section 8.7.

If σ2 is known, it does not improve the estimate µ̂, as can be seen from Eq. (29.2);
however, if µ is known, substitute it for µ̂ in Eq. (29.3) and replace N − 1 by N , to obtain
a somewhat better estimator of σ2.

If the yi have different, known, variances σ2
i , then the weighted average

µ̂ =
1
w

N∑
wi yi , (29.4)

is an unbiased estimator for µ with smaller variance than Eq. (29.2), where wi = 1/σ2
i

and w =
∑
wi. The standard deviation of µ̂ is 1/

√
w.

29.3. The method of maximum likelihood

29.3.1. Parameter estimation by maximum likelihood:
“From a theoretical point of view, the most important general method of estimation

so far known is the method of maximum likelihood” [3]. We suppose that a set of
independently measured quantities xi came from a p.d.f. f(x;α), where α is an unknown
set of parameters. The method of maximum likelihood consists of finding the set of
values, α̂, which maximizes the joint probability density for all the data, given by

L (α) =
∏
i

f(xi;α) , (29.5)
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29. Statistics 3

where L is called the likelihood. It is usually easier to work with lnL , and since both
are maximized for the same set of α, it is sufficient to solve the likelihood equation

∂ lnL
∂αn

= 0 . (29.6)

When the solution to Eq. (29.6) is a maximum, it is called the maximum likelihood
estimate of α. The importance of the approach is shown by the following proposition,
proved in Ref. 1:

If an efficient estimate α̂ of α exists, the likelihood equation will have a unique
solution equal to α̂.

In evaluating L , it is important that any normalization factors in the f ’s which involve
α be included. However, we will only be interested in the maximum of L and in ratios of
L at different α’s; hence any multiplicative factors which do not involve the parameters
we want to estimate may be dropped; this includes factors which depend on the data
but not on α. The results of two or more independent experiments may be combined by
forming the product of the L ’s, or the sum of the lnL ’s.

Most commonly the solution to Eq. (29.6) will be found using a general numerical
minimization program such as the CERN program MINUIT [8] which contains
considerable code to take account of the many special cases and problems which can arise.

Under a one-to-one change of parameters from α to β = β(α), the maximum likelihood
estimate α̂ transforms to β(α̂). That is, the maximum likelihood solution is invariant
under change of parameter. However, many properties of α̂, in particular the bias, are
not invariant under change of parameter.

29.3.2. Confidence intervals from the likelihood function:
The covariance matrix V may be estimated from

Vnm =
(
E

[
− ∂2 lnL
∂αn ∂αm

∣∣∣∣
α̂

])−1

. (29.7)

In the asymptotic case (or a linear model with Gaussian errors), L is Gaussian, lnL
is a (multidimensional) parabola, and the second derivative in Eq. (29.7) is constant,
so the “expectation” operation has no effect. This leads to the usual approximation of
calculating the error matrix of the parameters by inverting the second derivative matrix
of lnL . In this asymptotic case, it can be seen that a numerically equivalent way of
determining s-standard-deviation errors is from the contour given by the α′ such that

lnL (α′) = lnLmax − s2/2 , (29.8)

where lnLmax is the value of lnL at the solution point (compare with Eq. (29.32),
below). The extreme limits of this contour parallel to the αn axis give an approximate
s-standard-deviation confidence interval in αn. These intervals may not be symmetric
and in pathological cases they may even consist of two or more disjoint intervals.
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4 29. Statistics

Although asymptotically Eq. (29.7) is equivalent to Eq. (29.8) with s = 1, the latter
is a better approximation when the model deviates from linearity. This is because
Eq. (29.8) is invariant with respect to even a non-linear transformation of parameters
α, whereas Eq. (29.7) is not. Still, when the model is non-linear or errors are not
Gaussian, confidence intervals obtained with both these formulas are only approximate.
The true coverage of these confidence intervals can always be determined by a Monte
Carlo simulation, or exact confidence intervals can be determined as in Sec. 29.6.3.

29.3.3. Application to Poisson-distributed data:
In the case of Poisson-distributed data in a counting experiment, the unbinned

maximum likelihood method (where the index i in Eq. (29.5) labels events) is preferred
if the total number of events is very small. If there are enough events to justify binning
them in a histogram, then one may alternatively maximize the likelihood function for the
contents of the bins (so i labels bins). This is equivalent to minimizing [5]

χ2 =
∑
i

[
2(Nth

i −Nobs
i ) + 2Nobs

i ln(Nobs
i /Nth

i )
]
. (29.9)

where Nobs
i and Nth

i are the observed and theoretical (from f) contents of the ith
bin. In bins where Nobs

i = 0, the second term is zero. This function asymptotically
behaves like a classical χ2 for purposes of point estimation, interval estimation, and
goodness-of-fit. It also guarantees that the area under the fitted function f is equal to
the sum of the histogram contents (as long as the overall normalization of f is effectively
left unconstrained during the fit), which is not the case for χ2 statistics based on a
least-squares procedure with traditional weights.

29.4. Propagation of errors

Suppose that F (x;α) is some function of variable(s) x and the fitted parameters α,
with a value F̂ at α̂. The variance matrix of the parameters is Vmn. To first order in
αm − α̂m, F is given by

F = F̂ +
∑
m

∂F

∂αm
(αm − α̂m) , (29.10)

and the variance of F about its estimator is given by

(∆F )2 = E[(F − F̂ )2] =
∑
mn

∂F

∂αm

∂F

∂αn
Vmn , (29.11)

evaluated at the x of interest. For different functions Fj and Fk, the covariance is

E[(Fj − F̂j)(Fk − F̂k)] =
∑
mn

∂Fj
∂αm

∂Fk
∂αn

Vmn . (29.12)

If the first-order approximation is in serious error, the above results may be very
approximate. F̂ may be a biased estimator of F even if the α̂ are unbiased estimators of
α. Inclusion of higher-order terms or direct evaluation of F in the vicinity of α̂ will help
to reduce the bias.
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29. Statistics 5

29.5. Method of least squares

The method of least squares can be derived from the maximum likelihood theorem. We
suppose a set of N measurements at points xi. The ith measurement yi is assumed to be
chosen from a Gaussian distribution with mean F (xi;α) and variance σ2

i . Then

χ2 = −2 lnL + constant =
N∑
1

[yi − F (xi;α)]2

σ2
i

. (29.13)

Finding the set of parameters α which maximizes L is the same as finding the set which
minimizes χ2.

In many practical cases one further restricts the problem to the situation in which
F (xi;α) is a linear function of the αm’s,

F (xi;α) =
∑
n

αn fn(x) , (29.14)

where the fn are k linearly independent functions (e.g., 1, x, x2, . . ., or Legendre
polynomials) which are single-valued over the allowed range of x. We require k ≤ N , and
at least k of the xi must be distinct. We wish to estimate the linear coefficients αn. Later
we will discuss the nonlinear case.

If the point errors εi = yi − F (xi;α) are Gaussian, then the minimum χ2 will be
distributed as a χ2 random variable with n = N − k degrees of freedom. We can then
evaluate the goodness-of-fit (confidence level) from Figs. 28.1 or 28.3, as per the earlier
discussion. The confidence level expresses the probability that a worse fit would be
obtained in a large number of similar experiments under the assumptions that: (a) the
model y =

∑
αn fn is correct and (b) the errors εi are Gaussian and unbiased with

variance σ2
i . If this probability is larger than an agreed-upon value (0.001, 0.01, or 0.05

are common choices), the data are consistent with the assumptions; otherwise we may
want to find improved assumptions. As for the converse, most people do not regard a
model as being truly inconsistent unless the probability is as low as that corresponding
to four or five standard deviations for a Gaussian (6×10−3 or 6×10−5; see Sec. 29.6.4).
If the εi are not Gaussian, the method of least squares still gives an answer, but the
goodness-of-fit test would have to be done using the correct distribution of the random
variable which is still called “χ2.”

Minimizing χ2 in the linear case is straightforward:

−1
2
∂χ2

∂αm
=
∑
i

fm(xi)

(
yi −

∑
n αn fn(xi)
σ2
i

)

=
∑
i

yi fm(xi)
σ2
i

−
∑
n

αn
∑
i

fn(xi) fm(xi)
σ2
i

. (29.15)
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6 29. Statistics

With the definitions
gm =

∑
i

yi fm(xi)/σ2
i (29.16)

and
V −1
mn =

∑
i

fn(xi) fm(xi)/σ2
i , (29.17)

the k-element column vector of solutions α̂, for which ∂χ2/∂αm = 0 for all m, is given by

α̂ = V g . (29.18)

With this notation, χ2 for the special case of a linear fitting function (Eq. (29.14)) can
be rewritten in the compact form

χ2 = χ2
min + (α − α̂)T V −1(α− α̂) . (29.19)

Nonindependent yi’s

Eq. (29.13) is based on the assumption that the likelihood function is the product
of independent Gaussian distributions. More generally, the measured yi’s are not
independent, and we must consider them as coming from a multivariate distribution
with nondiagonal covariance matrix S, as described in Sec. 28.3.3. The generalization of
Eq. (29.13) is

χ2 =
∑
jk

[yj − F (xj ;α)]S−1
jk [yk − F (xk ;α)] . (29.20)

In the case of a fitting function that is linear in the parameters, one may differentiate
χ2 to find the generalization of Eq. (29.15), and with the extended definitions

gm =
∑
jk

yj fm(xk)S
−1
jk

V −1
mn =

∑
jk

fn(xj) fm(xk)S
−1
jk (29.21)

solve Eq. (29.18) for the estimators α̂.

The problem of constructing the covariance matrix S is simplified by the fact that
contributions to S (not to its inverse) are additive. For example, suppose that we have
three variables, all of which have independent statistical errors. The first two also have a
common error resulting in a positive correlation, perhaps because a common baseline with
its own statistical error (variance s2) was subtracted from each. In addition, the second
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29. Statistics 7

two have a common error (variance a2), but this time the values are anticorrelated. This
might happen, for example, if the sum of the two variables is a constant. Then

S =

σ2
1 0 0
0 σ2

2 0
0 0 σ2

3


+

 s2 s2 0
s2 s2 0
0 0 0

+

 0 0 0
0 a2 −a2

0 −a2 a2

 . (29.22)

If unequal amounts of the common baseline were subtracted from variables 1, 2, and
3—e.g., fractions f1, f2, and f3, then we would have

S =

σ2
1 0 0
0 σ2

2 0
0 0 σ2

3


+

 f2
1 s

2 f1f2s
2 f1f3s

2

f1f2s
2 f2

2 s
2 f2f3s

2

f1f3s
2 f2f3s

2 f2
3 s

2

 . (29.23)

While in general this “two-vector” representation is not possible, it underscores the
procedure: Add zero-determinant correlation matrices to the matrix expressing the
independent variation.

Care must be taken when fitting to correlated data, since off-diagonal contributions to
χ2 are not necessarily positive. It is even possible for all of the residuals to have the same
sign.

Example: straight-line fit
For the case of a straight-line fit, y(x) = α1 + α2 x, one obtains, for independent

measurements yi, the following estimates of α1 and α2,

α̂1 = (g1 Λ22 − g2 Λ12)/D , (29.24)

α̂2 = (g2 Λ11 − g1 Λ12)/D , (29.25)

where
(Λ11, Λ12, Λ22) =

∑
(1, xi, x2

i )/σ
2
i , (29.26a)

(g1, g2) =
∑

(1, xi)yi/σ2
i . (29.26b)

respectively, and
D = Λ11 Λ22 − (Λ12) 2 . (29.27)

The covariance matrix of the fitted parameters is:(
V11 V12

V12 V22

)
=

1
D

(
Λ22 −Λ12

−Λ12 Λ11

)
. (29.28)

The estimated variance of an interpolated or extrapolated value of y at point x is:

( ŷ − ytrue)2
∣∣∣
est

=
1

Λ11
+

Λ11

D

(
x− Λ12

Λ11

)2

. (29.29)
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8 29. Statistics

29.5.1. Confidence intervals from the chisquare function:
If y is not linear in the fitting parameters α, the solution vector may have to be found

by iteration. If we have a first guess α0, then we may expand to obtain

∂χ2

∂α

∣∣∣∣
α

=
∂χ2

∂α

∣∣∣∣
α0

+ V −1
α0
· (α−α0) + . . . , (29.30)

where ∂χ2/∂α is a vector whose mth component is ∂χ2/∂αm, and (V −1
mn) =

1
2∂

2χ2/∂αm∂αn. (See Eqns. 29.7 and 29.17. When evaluated at α̂, V −1 is the inverse
of the covariance matrix.) The next iteration toward α̂ can be obtained by setting
∂χ2/∂αm|α = 0 and neglecting higher-order terms:

α = α0 − Vα0 · ∂χ
2/∂α|α0 . (29.31)

If V is constant in the vicinity of the minimum, as it is when the model function is
linear in the parameters, then χ2 is parabolic as a function of α and Eq. (29.31) gives
the solution immediately. Otherwise, further iteration is necessary. If the problem is
highly nonlinear, considerable difficulty may be encountered. There may be secondary
minima, and χ2 may be decreasing at physical boundaries. Numerical methods have been
devised to find such solutions without divergence [7,8]. In particular, the CERN program
MINUIT [8] offers several iteration schemes for solving such problems.

Note that minimizing any function proportional to χ2 (or maximizing any function
proportional to lnL ) will result in the same parameter set α̂. Hence, for example, if
the variances σ2

j are known only up to a common constant, one can still solve for α̂.
One cannot, however, evaluate goodness-of-fit, and the covariance matrix is known only
to within the constant multiplier. The scale can be estimated at least roughly from the
value of χ2 compared to its expected value.

Additional information can be extracted from the behavior of the (normalized)
residuals, rj = (yj − F (xj ;α)/σj , which should themselves distribute normally with a
mean of 0.

If the data covariance matrix S has been correctly evaluated (or, equivalently, the σj ’s,
if the data are independent), then the s-standard deviation limits on the parameters are
given by a set α′ such that

χ2(α′) = χ2
min + s2 . (29.32)

This equation gives confidence intervals in the same sense as 29.8, and all the discussion
of Sec. 29.3.2 applies as well here, substituting −χ2/2 for lnL .
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